Upgrade your degree qualifications.
Overview
This programme allows students to 'Upgrade to Success'. In other words, you can upgrade a nonstandard qualification, or a third class honours degree, to a level equivalent to that of a first or second class honours degree.
The qualification that you gain from this course is a marketable addition to your CV. The skills gained through this course are highly transferable; maths is the backbone of many disciplines along a broad range of categories such as sciences and economics.
The material that is currently in the Mathematics programme covers a wide range of topics including mathematical biology, fluid dynamics, magneto hydrodynamics and numerical analysis and scientific computing as well as core subjects such as analysis and mathematical methods.
This course does not provide a direct entry route to Masters or PhD programmes at Dundee: applications for these are considered separately.
The Mathematics division at the University of Dundee boasts an enviable staff to student ratio. Teachers are able to get to know students on a personal level, enhancing the support they can provide and improving our students' learning experience.
We also provide 24/7 access to computers dedicated to students studying mathematics to further support you throughout your studies.
Who should study this course?
A candidate for the Diploma must have obtained a university degree or equivalent qualification and have a suitable background in mathematics, normally equivalent to one or two year's study at university.
This is for students who have a grounding in preHonours mathematics (but not necessarily obtained as part of a Mathematics degree course), and wish to study a selection of modern and challenging topics in Applied Mathematics at University Honours level.
Teaching Excellence Framework (TEF)
The University of Dundee has been given a Gold award – the highest possible rating – in the 2017 Teaching Excellence Framework (TEF).
Teaching & Assessment
How you will be taught
You will learn by a combination of lectures, tutorials, workshops and computer practical classes.
How you will be assessed
Coursework (20%) and a written examination (80%).
What you will study
The Graduate Diploma in Mathematics is made up by selecting eight Level 3 or Level 4 modules available in the Division of Mathematics. Each of these consists of 22 lectures and 11 tutorials.
The standard of presentation is equivalent to that of an honours degree, and if you have a degree without honours or similar attainment, you may find a Graduate Diploma is a useful way of upgrading your qualifications.
Level 3 and 4 modules
About the module
This module provides an indepth study of Differential Equations aimed at Level 3 students. This module is mandatory for all Level 3 students on Mathematics (including Mathematics combined) degrees. If you have questions about this module please contact your Advisor of Studies.
Prerequisites
Students taking this module must have achieved a pass mark in each of the modules MA21001 and MA22001, or equivalents.
Indicative Content

First Order Differential Equations
Separable equations, Linear equations with constant coefficients, Linear equations with variable coefficients, integrating factors, Homogeneous equations, Exact equations and integrating factors.

Second Order Differential Equations
Homogeneous equations with constant coefficients, Fundamental solutions of linear homogeneous equations, Linear independence and the Wronskian (including Abel′s formula), Reduction of order and reduction to the normal form, Nonhomogeneous equations, Method of undetermined coefficients, Initial conditions.

Systems of First Order Linear Equations
Transformation of an nth order equation to a system of n first order equations, Homogeneous linear systems with constant coefficients, Fundamental sets of solutions and fundamental matrices, the Wronskian and Abel′s formula, The exponential of a matrix, Nonhomogeneous linear systems, Variation of parameters, Homogeneous linear systems of two first order equations with constant coefficients, Stability and the phase plane.

Partial Differential Equations and Fourier Series
Fourier series of functions of one variable, Dirichlet′s Conditions, Technique for determining Fourier coefficients (even/odd functions). Gibbs′ phenomena. Introduction to Partial Differential Equations, Technique of separation of variables with application to initial and boundary value problems.
Delivery and Assessment
The module is delivered in the form of lectures and workshops/tutorials and assessed via an exam (80%) and coursework (20%).
Credit Rating
This module is a Scottish Higher Education Level 3 or SCQF level 9 module and is rated as 15 SCOTCAT credits or 7.5 ECTS credits.
About the module
The aim of this module is to provide the Level 3 student with a variety of basic mathematical techniques with which to analyse a wide class of mathematical models arising in science and engineering. This module is mandatory for all Level 3 students on Mathematics (including Mathematics combined) degrees. If you have questions about this module please contact your Advisor of Studies.
Prerequisites
Students taking this module must have achieved a pass mark in each of the modules MA21001 and MA22001, or equivalents.
Indicative Content

Revision of vector products and scalar functions of three variables.

Orthogonal coordinates.

Curves in space, parameterization and arc length

Surfaces in space, parameterization, normal vectors and tangent planes.

The operators grad, div, curl.

Line integrals, surface integrals, and volume integrals.

Divergence Theorem and Stokes Theorem.

Scalar and vector potentials.
Delivery and Assessment
The module is delivered in the form of lectures and workshops/tutorials and assessed via an exam (80%) and coursework (20%).
Credit Rating
This module is a Scottish Higher Education Level 3 or SCQF level 9 module and is rated as 15 SCOTCAT credits or 7.5 ECTS credits.
About the module
This module provides an indepth study of Analysis aimed at Level 3 or 4 students in which the concepts are defined precisely and the results are proved rigorously. This module is mandatory for Level 3 students taking a BSc or MMath in Mathematics. This module may be taken in combination with other Level 3 or 4 modules by Level 4 students on Mathematics combined degrees other than those taking the MSci in Mathematics and Physics. If you have questions about this module or the possible combinations, please contact your Advisor of Studies.
Prerequisites
Students taking this module must have achieved a pass mark in each of the modules MA21001 and MA22001, or equivalents.
Indicative Content

Normed and Metric Spaces
Supremum, Completeness Axiom. Definitions and properties of normed and metric spaces, convergence of sequences, continuity, closed sets (in terms of limit points)

Connectedness and Completeness
Connected sets: definition in metric spaces; relation to the concept of continuity. Cauchy sequences, completeness and relation to closed sets, Banach's contraction mapping theorem

Compact Sets
General definition with open sets of the notion of compactness, its sequences characterisations on metric spaces, and its connection with closed subsets. "Closed and bounded" characterisation of the compact sets in R^{n} (i.e., the HeineBorel Theorem), connection with limit points, Weierstrass Theorem. Connection between continuity and compactness. The concept of uniform continuity and its connection with compactness. Urysohn's Lemma [1 lecture]. Partition of Unity on R^{n}

Convergence and Equicontinuity
Uniform convergence of sequences of functions. The concept of equicontinuity of a family of functions and ArzelaAscoli Theorem.

Series
Ratio test, comparison test, Weierstrass Mtest. Power series, Taylor series (mention of Taylor's theorem).
Delivery and Assessment
The module is delivered in the form of lectures and workshops/tutorials and assessed via an exam (80%) and coursework (20%).
Credit Rating
This module is a Scottish Higher Education Level 3 or SCQF level 9 module and is rated as 15 SCOTCAT credits or 7.5 ECTS credits.
About the module
This module provides an indepth study of Operational Research aimed at Level 3 or 4 students. This module is mandatory for Level 3 students taking a BSc or MMath in Mathematics. This module may be taken in combination with other Level 3 or 4 modules by Level 4 students on Mathematics combined degrees other than those taking the MSci in Mathematics and Physics. If you have questions about this module or the possible combinations, please contact your Advisor of Studies.
Prerequisites
Students taking this module must have achieved a pass mark in each of the modules MA21001 and MA22001, or equivalents.
Indicative Content

Linear Programming
Structure of Linear Programming problems, Graphical solutions, Simplex method, Duality, Integer linear programming, Branch and Bound method.

Transportation Problems
Transportation and Assignment problems, initial basic feasible solution, Hungarian method.

Network Programming
Graphs, Minimum cost flow, Maxflow/Mincut theorem, FordFulkerson method.
Delivery and Assessment
The module is delivered in the form of lectures and workshops/tutorials and assessed via an exam (80%) and coursework (20%).
Credit Rating
This module is a Scottish Higher Education Level 3 or SCQF level 9 module and is rated as 15 SCOTCAT credits or 7.5 ECTS credits.
About the module
Matrix algebra is a fundamental and widely used resource for modelling a wide variety of problems in science, technology, industry and commerce. The aim of this course is to use computers to implement algorithms and to solve a number of problems that can be stated in terms of matrixrelated equations, and to understand the relevant matrix theory that underpins these algorithms. This module is mandatory for students taking the BSc or MMath in Mathematics and may optionally be taken in combination with other modules by students on any of the Mathematics combined degrees. If you have questions about this module or the possible combinations, please contact your Advisor of Studies.
Prerequisites
Students taking this module must have achieved a pass mark in each of the modules MA21001 and MA22001, or equivalents.
Indicative Content

Direct Methods for Solving Linear Systems of Equations
Basic properties of matrices, Gaussian elimination, partial pivoting. LUfactorization. Tridiagonal systems.

Iterative Methods
A general iterative method and convergence, Jacobi method, GaussSeidel method, SOR (successive overrelaxation).

Iterative Methods for Solving Eigenvalue Problems
Review of eigenvalue problems, QR factorizations

Using MATLAB to solve problems in linear algebra
Introduction to MATLAB, Application of MATLAB to algorithms for LU factorization, iterative methods and QR factorizations.
Delivery and Assessment
The module is delivered in the form of lectures and workshops/tutorials and computer labs, and assessed via an exam (70%) and computer homeworks (30%).
Credit Rating
This module is a Scottish Higher Education Level 3 or SCQF level 9 module and is rated as 15 SCOTCAT credits or 7.5 ECTS credits.
About the module
This module introduces the notions of differentiation and integration for functions of a complex variable. It develops the theory with important applications such as evaluation of path integrals via residue calculus, the fundamental theorem of algebra and conformal mappings. This module is mandatory for students taking the BSc or MMath in Mathematics and may optionally be taken in combination with other modules by students on any of the Mathematics combined degrees. If you have questions about this module or the possible combinations, please contact your Advisor of Studies.
Prerequisites
Students taking this module must have achieved a pass mark in each of the modules MA21001 and MA22001, or equivalents.
Indicative Content

Algebraic properties of complex numbers

Definition of the derivative; CauchyRiemann equations

Power series; radius of convergence

Logarithmic, exponential and trigonometrical functions; branch points

Line integrals. The Cauchy integral theorem and integral formula

The Cauchy formula for derivatives; Taylor series

Liouville's theorem; fundamental theorem of algebra

Laurent's theorem; poles and the residue theorem; zeros of analytic functions

Evaluation of integrals

Conformal mappings
Delivery and Assessment
The module is delivered in the form of lectures and workshops/tutorials and assessed via an exam (80%) and coursework (20%).
Credit Rating
This module is a Scottish Higher Education Level 3 or SCQF level 9 module and is rated as 15 SCOTCAT credits or 7.5 ECTS credits.
About the module
The basic ideas at the foundations of many physical theories, such as continuum mechanics, fluid dynamics, electromagnetism, thermodynamics, general relativity and gauge theories, are geometrical. This course develops some of the geometrical concepts and tools that are essential for understanding classical and modern physics and engineering. This module is mandatory for students taking the BSc or MMath in Mathematics and may optionally be taken in combination with other modules by students on any of the Mathematics combined degrees. If you have questions about this module or the possible combinations, please contact your Advisor of Studies.
Prerequisites
Students taking this module must have achieved a pass mark in each of the modules MA21001 and MA22001, or equivalents, and have taken MA31007 or MA32002.
Indicative Content

Manifolds
Submanifolds in R^{n}. Implicit Function theorem. Examples

Vector fields on manifolds
The tangent space. Vectors as differential operators. Vector fields and flows.

Covectors and exterior forms
Linear functionals and the dual space. Differential of a function. The pullback of a covector.

The exterior algebra
The geometric meaning of forms in R^n. Exterior product. Inner product. Exterior differential. Relation to vector analysis.

Integration of forms
Line and surface integrals. Independence of parameterisation. Integrals and pullbacks. Stoke′s Theorem.

Liederivative
The Liederivative of forms. Relation to equations in physics.
Delivery and Assessment
The module is delivered in the form of lectures and workshops/tutorials and assessed via an exam (80%) and coursework (20%).
Credit Rating
This module is a Scottish Higher Education Level 3 or SCQF level 9 module and is rated as 15 SCOTCAT credits or 7.5 ECTS credits.
About the module
The aim of this course is to introduce you to some biological phenomena and their formulation in terms of mathematical models, which lead to difference equations and ordinary differential equations, and to investigate the solutions of these equations. This module is mandatory for students taking the BSc or MMath in Mathematics or the BSc or MSci in Mathematical Biology, and may optionally be taken in combination with other modules by students on any of the other Mathematics combined degrees. If you have questions about this module or the possible combinations, please contact your Advisor of Studies.
Prerequisites
Students taking this module must have achieved a pass mark in each of the modules MA21001 and MA22001, or equivalents, and must have taken modules MA31002 and either MA31007 or MA32002.
Indicative Content

Single Species Population dynamics
Difference equations: graphical analysis, fixed points and linear stability analysis. First order systems of ordinary differential equations: logistic equation, steady states, linearisation, and stability. Harvesting and fisheries.

Interacting Species
Systems of difference equations (hostparasitoid systems). Systems of ordinary differential equation (predatorprey and competition models).

Molecular Dynamics
Biochemical kinetics: MichaelisMenten kinetics. Metabolic pathways: activation and inhibition.
Delivery and Assessment
The module is delivered in the form of lectures and workshops/tutorials and assessed via an exam (80%) and coursework (20%).
Credit Rating
This module is a Scottish Higher Education Level 3 or SCQF level 9 module and is rated as 15 SCOTCAT credits or 7.5 ECTS credits.
About the module
This module is a personal research project which runs over both semesters. During the first semester there will be classes in computer labs where students will develop skills that will be useful in completing a project. The module consists of a substantial project together with a project report. This module is mandatory for Level 4 students taking the BSc or MMath in Mathematics or the BSc or MSci in Mathematical Biology. If you have questions about this module please contact your Advisor of Studies.
Prerequisites
Students taking this module must have achieved a pass mark in each of the modules MA31002 and either MA31007 or MA32002, or equivalents.
Indicative Content

MATLAB
Become familiar with the basic concepts of MATLAB and its use in solving differential equations.

Communicating Mathematics
Learn how to typeset mathematics using LaTeX. Understand how to structure, set out, and typeset a mathematical report.

Presentations
Prepare and deliver presentations on general topics in mathematics, and on your chosen project.

Project
Carry out a substantial project in an area of mathematics and document the work in a project report.
Delivery and Assessment
The project will require substantial independent work as well as regular meetings with the project supervisor(s), as well as the inclass contact hours in semester 1. Assessment will be based on coursework (100%) consisting of the project report and presentations.
Credit Rating
This module is a Scottish Higher Education Level 4 or SCQF level 10 module and is rated as 30 SCOTCAT credits or 15 ECTS credits.
About the module
Ordinary Differential Equations (ODEs) are an important modelling tool in Science and Engineering. These can rarely be solved exactly and so techniques have been developed to derive approximate solutions that may, in principle, be made as accurate as desired. This module, aimed at Level 4 students, will investigate these techniques. This module is mandatory for Level 4 students taking a BSc or MSci in Mathematical Biology, or an MSci in Mathematics and Physics. This module may be taken in combination with other Level 3 or 4 modules by other Level 4 students. If you have questions about this module or the possible combinations, please contact your Advisor of Studies.
Prerequisites
Students taking this module must have achieved a pass mark in each of the modules MA31002 and either MA31007 or MA32002, or equivalents.
Indicative Content

Numerical methods for initial value problems for ODEs
Taylor Series Methods; Linear multistep methods: onestep methods (Euler, Trapezoidal and Backward Euler methods) and twostep methods; Consistency, zerostability, weak stability theory and Astability; Provision of the extra starting values and the potential for instability; RungeKutta methods: construction and weak stability theory; Application to systems.

Boundary value problems for ODEs
BVPs for second order ODEs; eigenvalues and eigenfunctions; orthogonality; Green′s functions and maximum principles; Finite difference methods: 2nd order methods; Treatment of boundary conditions; Discrete maximum principles; Convergence.
Delivery and Assessment
The module is delivered in the form of lectures and workshops/tutorials and assessed via an exam (80%) and coursework (20%).
Credit Rating
This module is a Scottish Higher Education Level 4 or SCQF level 10 module and is rated as 15 SCOTCAT credits or 7.5 ECTS credits.
About the module
This module provides an introduction to the Mathematics of Fluids and Plasmas, focusing on Fluid Dynamics. This module is mandatory for students taking the BSc or MMath in Mathematics or the BSc or MSci in Mathematics and Physics, and is optional for students taking any other Mathematics combined degrees. If you have questions about this module or the possible combinations, please contact your Advisor of Studies.
Prerequisites
Students taking this module must have achieved a pass mark in each of the modules MA31002 and either MA31007 or MA32002, or equivalents.
Indicative Content

Fundamentals
Fields, flux, potentials. Representation of fields: fieldlines/streamlines, contours, flux surfaces. Gauss' and Stokes' theorems.

Conservation laws
Conservation of mass, conservation of momentum, Euler's Eq., energy equation, equation of state.

Common approximations
Incompressible, irrotational, potential flows, Bernoulli’s the orem. Laplace’s equation, boundary conditions, uniqueness theorem, separable solutions.

Vorticity
Vorticity and circulation, Kelvin's circulation theorem, vorticity evolution.

The solar wind
Introduction to solar features, Parker's solar wind solution.

Waves
Sound waves, linearisation, dispersion relations, wave properties.

Viscous flow
Stress tensor, viscous stresses, viscosity, energy dissipation, the Reynolds number.

Turbulence and Chaos
Delivery and Assessment
The module is delivered in the form of lectures and workshops/tutorials and assessed via an exam (80%) and coursework (20%).
Credit Rating
This module is a Scottish Higher Education Level 4 or SCQF level 10 module and is rated as 15 SCOTCAT credits or 7.5 ECTS credits.
About the module
This module aimed at Level 4 students, covers the theory and application of graphs, including both theoretical work and the use of algorithms. This module is mandatory for students taking the BSc or MMath in Mathematics, and is optional for students taking any other Mathematics combined degrees. If you have questions about this module or the possible combinations, please contact your Advisor of Studies.
Prerequisites
Students taking this module must have achieved a pass mark in each of the modules MA21001 and MA22001, or equivalents.
Indicative Content

Introduction to Graph Theory
Fundamental definitions of graph theory. Introduction to some special types of graphs. Degree sequences and corresponding graphs.

Connectedness
Sufficient conditions to ensure connectedness. Connectivity and edge connectivity. Tarry's algorithm.

Eulerian and Hamiltonian Graphs
Necessary and sufficient conditions for graphs to be Eulerian. Fleury's algorithm. Necessary conditions for graphs to be Hamiltonian.

Trees
Properties of trees. Spanning trees and labelled spanning trees. Finding minimum weight spanning trees.

Planar and Nonplanar Graphs
Necessary conditions for graphs to be Planar. Toroidal graphs. Genus of graphs.

Graph Colourings
Vertex and edge colourings Chromatic polynomials. The 4colour theorem.
Delivery and Assessment
The module is delivered in the form of lectures and workshops/tutorials and assessed via an exam (80%) and coursework (20%).
Credit Rating
This module is a Scottish Higher Education Level 4 or SCQF level 10 module and is rated as 15 SCOTCAT credits or 7.5 ECTS credits.
About the module
The aim of this module is to introduce Level 4 students to some biological phenomena and their formulation in terms of mathematical models, building on the work in MA32009/MA41002 (Mathematical Biology I). This module is mandatory for Level 4 students taking the BSc or MSci in Mathematical Biology, and may optionally be taken in combination with other modules by students taking the BSc or MMath in Mathematics or any of the other Mathematics combined degrees. If you have questions about this module or the possible combinations, please contact your Advisor of Studies.
Prerequisites
Students taking this module must have achieved a pass mark in the module MA32009, or in MA41002, or equivalent.
Indicative Content

Modelling of Biological Systems using Partial Differential Equations
Derivation of conservation equations. Different models for movement (e.g. diffusion, convection, directed movement). Connection between diffusion and probability.

Linear reactiondiffusion equations
Fundamental solution for linear diffusion equations. Speed of a wave of invasion.

Nonlinear reactiondiffusion equations
Travelling wave solutions for monostable equations (e.g. Fisher equation). Travelling wave solutions for bistable equations.

Systems of reactiondiffusion equations
Travelling wave solutions for systems of reactiondiffusion equations. Pattern formations in systems of reactiondiffusion equations. Pattern formations in chemotaxis equations.

Mathematical modelling of infection diseases (SIR)
Derivation of a simple SIR model. Travelling wave solutions for the simple SIR model. Generalisation of the simple SIR model. Stochastic SIR model.
Delivery and Assessment
The module is delivered in the form of lectures and workshops/tutorials and assessed via an exam (80%) and coursework (20%).
Credit Rating
This module is a Scottish Higher Education Level 4 or SCQF level 10 module and is rated as 15 SCOTCAT credits or 7.5 ECTS credits.
About the module
This module gives a broad introduction to PDEs that includes classification into different types, classical solution methods, qualitative properties and, for the majority of problems that cannot be solved exactly, provides techniques for constructing approximate solutions. This module is mandatory for Level 4 students taking the BSc or MSci in Mathematical Biology, and may optionally be taken in combination with other modules by students taking the BSc or MMath in Mathematics or any of the other Mathematics combined degrees. If you have questions about this module or the possible combinations, please contact your Advisor of Studies.
Prerequisites
Students taking this module must have taken the module MA41003, or equivalent.
Indicative Content

First and Second Order PDEs
Basic Theory; examples of fundamental solutions Second order linear PDEs; classi fication, characteristics; dAlemberts solution of the onedimensional wave equation.

Boundary Value Problems for PDEs
Finitedifference methods for second order problems (Poisson's equation): the treatment of boundary conditions and curved boundaries in two dimensions.

Initial Value Problems for PDEs
Parabolic and Hyperbolic equations: Fundamental solutions. General discussion of basic qualitative properties such as dissipation (energy inequalities) and characteristics. Construction of numerical methods: twolevel methods and brief reference to threelevel methods (if time permits). Local truncation errors. Stability and choice of norm: Maximum norm, L2 norm via von Neumann's method. Application to hyperbolic systems. The Method of Lines.
Delivery and Assessment
The module is delivered in the form of lectures and workshops/tutorials and assessed via an exam (80%) and coursework (20%).
Credit Rating
This module is a Scottish Higher Education Level 4 or SCQF level 10 module and is rated as 15 SCOTCAT credits or 7.5 ECTS credits.
About the module
This module builds on the foundations established in Mathematics of Fluids and Plasmas I (MA41006). This module may optionally be taken by students on any Mathematics or Mathematics combined degree other than those taking the BSc or MSci in Mathematical Biology. If you have questions about this module or the possible combinations, please contact your Advisor of Studies.
Prerequisites
Students taking this module must have achieved a pass mark in each of the modules MA31002 and MA32002, or equivalents, and must have taken MA41006.
Indicative Content

Electromagnetism
Maxwell's equations. Electrostatics. Magnetostatic fields, magnetic effect of currents. Electrodynamics. Waves.

Introduction to properties of plasmas, especially on the Sun

Equations of Magnetohydrodynamics (MHD)
Lorentz force, MHD equations, importance of terms. Diffusion and frozenin flux. Magnetic field lines and flux tubes.

MHD solutions
Hydrostatic pressure balance, plasma beta. Potential fields. Forcefree fields, coronal arcades. GradShafranov equation.

Waves
Linearised MHD equations. Sound waves, Alfven waves, magnetoacoustic waves.

Solar applications
Magnetic reconnection. Magnetic helicity. Dynamo theory. Solar flares, CMEs.
Delivery and Assessment
The module is delivered in the form of lectures and workshops/tutorials and assessed via an exam (80%) and coursework (20%).
Credit Rating
This module is a Scottish Higher Education Level 4 or SCQF level 10 module and is rated as 15 SCOTCAT credits or 7.5 ECTS credits.
Careers
Mathematics is central to the sciences, and to the development of a prosperous, modern society. The demand for people with mathematical qualifications is considerable, and a degree in mathematics is a highly marketable asset.
Mathematics graduates are consistently amongst those attracting the highest graduate salaries and can choose from an everwidening range of careers in research, industry, science, engineering, commerce, finance and education.
Many of our graduates enter the financial sector following career paths in accountancy, banking, the stock market and insurance.
Even if you do not take your mathematics any further than university, employers know that mathematics graduates are intelligent, logical problem solvers. With this training behind you, the career options become almost limitless.
Find out more from our Careers Service website.
Entry Requirements
A degree including a Mathematics qualification equivalent to one or two years study at University, depending on the level of delivery.
EU and International qualifications
English Language Requirement
IELTS Overall  6.0 

Listening  5.5 
Reading  5.5 
Writing  5.5 
Speaking  5.5 
Equivalent grades from other test providers
English Language Programmes
We offer PreSessional and Foundation Programme(s) throughout the year. These are designed to prepare you for university study in the UK when you have not yet met the language requirements for direct entry onto a degree programme.
Discover our English Language Programmes
Fees & Funding
The fees you pay will depend on your fee status. Your fee status is determined by us using the information you provide on your application.
Find out more about fee status
Fee status  Fees for students starting academic year 201920 

Scottish and EU students  £4,700 per year of study See our scholarships for UK/EU applicants 
Rest of UK students  £4,700 per year of study See our scholarships for UK/EU applicants 
Overseas students (nonEU)  £10,900 per year of study See our scholarships for International applicants 
Additional costs
You may incur additional costs in the course of your education at the University over and above tuition fees in an academic year.
Examples of additional costs:
One off cost  Ongoing cost  Incidental cost 

Graduation fee  Studio fee  Field trips 
*these are examples only and are not exhaustive.
Additional costs:
 may be mandatory or optional expenses
 may be one off, ongoing or incidental charges and certain costs may be payable annually for each year of your programme of study
 vary depending on your programme of study
 are payable by you and are nonrefundable and nontransferable
Unfortunately, failure to pay additional costs may result in limitations on your student experience.
For additional costs specific to your course please speak to our Enquiry Team.
Your Application
You apply for this course through our Direct Application System, which is free of charge. You can find out more information about making your application when you click Apply Now below
Degree  Course code  

Apply now  Mathematics PGDip  P024417 
Course Contact
Dr Dumitru Trucu
Science and Engineering
pgtmaths@dundee.ac.uk
+44 (0)1382 384462